

特点

- 待机电流<3uA
- · 具有BAT-VDD 防倒灌功能
- 支持OV 电池充电
- 线性充电模式, 充电电流可达600mA
- 涓流/恒流/恒压三段式充电
- 充电电流外部可调
- 充电电流智能热调节
- 自动再充电
- 充电状态指示
- 符合IEC62368 最新标准
- SOT23-5L 封装
- 无铅, 无卤素
- 高精度充满检测电压阈值: 4.2V 精度±42mV

应用场合

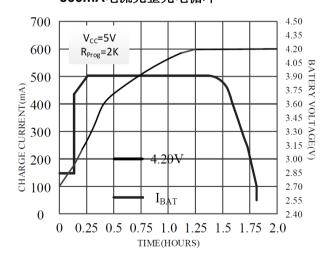
- 便携式媒体播放
- 蓝牙应用

绝对最大额定值

- 输入电源电压(VCC): -0.3V~9V
- PROG: -0.3V~9V
- BAT: -0.3V~9V
- CHRG : -0.3V~9V
- BAT短路持续时间: 连续
- BAT 引脚电流: 600mA
- PROG 引脚电流: 800uA
- 最大结温: 150℃
- 工作环境温度范围: -40℃~+85℃
- · 贮存温度范围: -55℃~150℃
- 引脚温度(焊接时间10秒):260℃

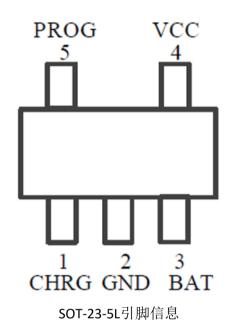
概述

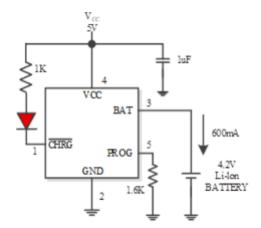
MLS4054A是一款高集成度、高性价比的单节锂离子电池充电 器。MLS4054A采用恒定电流/恒定电压线性控制,只需较少 的外部元件数目, 使得MLS4054A 是便携式应用的理想选择; 同时,也可以适合USB电源和适配器电源工作。MLS4054A采 用了内部PMOSFET架构,加上防倒充电路,所以不需要外部 检测电阻和隔离二极管。热反馈可对充电电流进行自动调节, 以便在大功率操作或高环境温度条件下对芯片温度加以限制。 充满电压固定于4.2V; 充电电流可通过PROG脚外接一个电阻 设置,最高可达600mA。当输入电压(交流适配器或 USB 电 源)被拿掉时, MLS4054A自动进入一个低电流状态, 电池 漏电流在3uA以下。MLS4054A的其他特点包括充电电流监控 器、欠压闭锁、自动再充电和一个用于指示充电结束和输入 电压接入的状态引脚。



(M) Halogen-Free

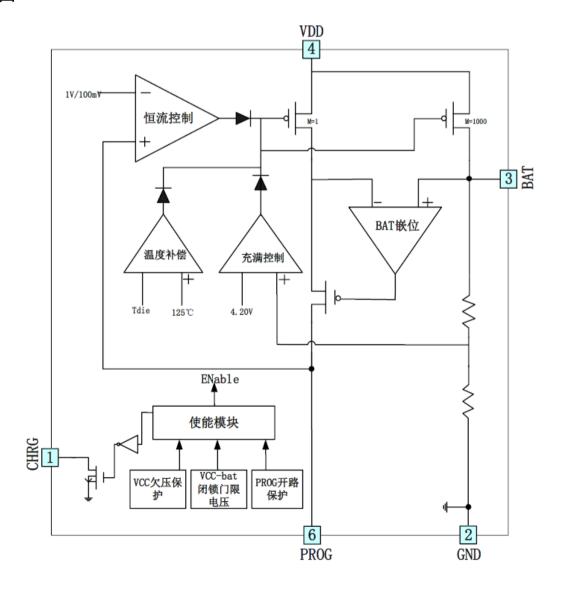
典型应用


500mA电流完整充电循环

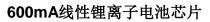


产品引脚图和引脚位说明

SOT-23-5L	引脚名称	引脚功能		
1	CHRG	漏极开路输出的充电状态指示端		
2	GND	地		
3	BAT	充电电流输出		
4	VCC	正输入电源电压		
5	PROG	充电电流设定、充电电流监控和停机引脚		



典型电路



600mA单节锂离子电池充电器

方框图

电特性

凡标注●表示该指标适合整个工作温度范围,否则仅指TA=25℃,VCC=5V,除非特别注明。

符号	参数	条件		最小值	典型值	最大值	单位
V _{CC}	输入电源电压		•	4.5	5	9	V
Icc		充电模式,, R _{PROG} = 10k	•		150	360	μА
	输入电源电流	待机模式 (充电终止)	•		75	180	μА
		停机模式(RPROG未连,VCC 〈 VBAT,或VCC 〈 VUV)			45	100	μА
V _{FLOAT}	稳定输出(浮充)电压	V_{DD} =5V, R_{PROG} =2K		4. 158	4. 2	4. 242	V
		V_{DD} =5V; V_{BAT} =3.9V; R_{PROG} =2K	•	450	500	550	mA
T	BAT引脚电流:(电流模式测试条件是VBAT=4.0V)	$V_{DD}=5V$; $V_{BAT}=3.9V$; $R_{PROG}=3.3K$	•	270	300	330	mA
$1_{ m BAT}$	BA1分牌电流: (电流模式测试余件定VBA1=4.0V)	V_{DD} =5V; V_{BAT} =3.9V; R_{PROG} =10K	•	90	100	110	mA
		V _{DD} 悬空或接地;V _{BAT} =4.0V			0.1	3	μA
I_{TRIKL}	涓流充电电流	$V_{BAT} < V_{TRIKL}, R_{PROG} = 10K$	•	35	50	65	mA
V_{TRIKL}	涓流充电门限电压	V _{BAT} 从低至高		2.8	2. 9	3.0	V
V_{TRHYS}	涓流充电迟滞电压	V _{BAT} 从高至低			150		mV
V_{UV}	VCC欠压闭锁门限	VCC从低至高	•	3	3. 7	4.2	V
V _{UVHYS}	VCC欠压闭锁迟滞	VCC从高至低	•		170		mV
$V_{ m MSD}$	手动停机门限电压	PROG引脚电平上升	•		2.6		V
	VCC-VBAT闭锁门限电压	VCC从低至高			200		mV
$V_{ m ASD}$	ACC_ADVI N1部门 1站6 吊下	VCC从高到低	 4. 158 450 270 90 35 2. 8 3 4 	90		mV	
I_{TERM}	0.15C终止电流门限	R _{PROG} =2K	•	35	50	65	mA
V_{PROG}	PROG引脚电压	V_{DD} =5V, R_{PROG} =4K	•	0.9	1.0	1.1	V
V_{CHRG}	CHRG引脚输出低电压	I_{CHRG} =5mA			50	100	mV
Δ V _{RECHRG}	再充电电池门限电压	V _{FLOAT} -V _{RECHRG}			150		mV
отс	内置温度补偿				125		$^{\circ}$
R_{ON}	功率FET"导通"电阻(在VCC与BAT之间)				1		Ω
$\mathbf{t}_{ ext{RECHARGE}}$	再充电比较器滤波时间	V _{BAT} 高至低		0.6	1.5	3	ms
t _{TERM}	终止比较器滤波时间	IBAT 降至 ICHG/10以下		0.6	1.5	3	ms
I_{PROG}	PROG引脚上拉电流				1		μА

工作原理

MLS4054A是一款采用恒流/恒压算法的单芯锂离子电池充电器。它可以提供高达600mA的充电电流,最终浮子电压精度为±1%。MLS4054A包括一个内部p沟道功率MOSFET和热调节电路。不需要阻塞二极管或外部电流检测电阻;热反馈自动调节充电电流,以限制芯片在高功率工作或高环境温度条件下的温度。此外,MLS4054A能够通过USB电源工作。当VCC引脚的电压高于UVLO阈值水平,并且从PROG引脚连接到地或当电池连接到充电器输出时,充电周期开始。如果BAT引脚小于2.9V,则充电器进入涓流充电模式。在这种模式下,MLS4054A提供大约1/10的编程充电电流,使电池电压达到全电流充电的安全水平。当BAT引脚电压高于2.9V时,充电器进入恒流模式,将程序设定的充电电流提供给电池。当BAT引脚接近最终浮压(4.2V)时,MLS4054A进入恒压模式,充电电流开始减小。当充电电流降至程序设定值的1/10时,充电周期结束。

正常充电循环

当Vcc引脚电压升至UVLO门限电平以上且在PROG引脚与地之间连接了一个精度为1%的设定电阻器或当一个电池与充电器输出端相连时,一个充电循环开始。如果BAT引脚电平低于2.9V,则充电器进入涓流充电模式。在该模式中,MLS4054A提供约1/10的设定充电电流,以便将电池电压提升至一个安全的电平,从而实现满电流充电。当BAT引脚电压升至2.9V以上时,充电器进入恒定电流模式,此时向电池提供恒定的充电电流。当BAT引脚电压达到最终浮充电压(4.2V)时,MLS4054A进入恒定电压模式,且充电电流开始减小。当充电电流降至设定值的1/10,充电循环结束。

充电电流的设定

充电电流是采用一个连接在PROG引脚与地之间的电阻器来设定的。设定电阻器和充电电流采用下列公式来计算:根据需要的充电电流来确定电阻器阻值: $R_{PROG} = \frac{1100}{I_{out}}$ (误差±10%)

客户应用中,可根据需求选取合适大小的RPROG RPROG与充电电流的关系确定可参考下表:

R _{PROG} (K)	I _{BAT} (mA)		
20	50		
10	100		
5.1	200		
3.3	300		
2	500		
1.6	600		

充电终止

当BAT电压在达到最终浮充电压之后充电电流降至设定值的10%时,充电循环被终止。该条件是通过采用一个内部滤波比较器对PROG引脚进行监控来检测的。当PROG引脚电压降至 100mV 以下的时间超过tTERM时,充电被终止。充电电流被锁断,MLS4054A进入待机模式。

在待机模式中,MLS4054A对BAT引脚电压进行连续监控。如果该引脚电压降到4.05V的再充电门限电压以下,则再次开始向电流充电。当在待机模式中进行再次充电循环,可手动启动:通过对USB充电端口重新上电,或移除充电器使用PROG引脚进行再启动。

充电状态指示器 (CHRG)

MLS4054A有一个漏极开路状态指示输出端。当充电器处于充电状态时,CHRG被拉到低电平,在其它状态,CHRG处于高阻态。当不用状态指示功能时,将状态指示输出端接到地。

充电状态	红灯CHRG
正在充电状态	亮
电池充满状态	灭
欠压,PROG悬空,BAT电压高于VCC	灭
VCC正常接入,无电池	闪烁

热限制

如果芯片温度升至约125℃的预设值以上,则一个内部热反馈环路将减小设定的充电电流,直到155℃以上减小电流至0。该功能可防止MLS4054A过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏MLS4054A的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

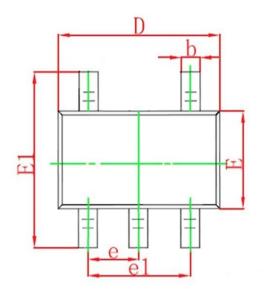
欠压闭锁

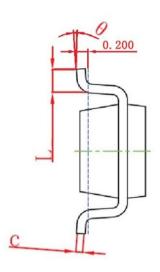
一个内部欠压闭锁电路对输入电压进行监控,并在 V_{CC} 升至欠压闭锁门限以上之前使充电器保持在停机模式。UVLO电路将使充电器保持在停机模式。如果UVLO比较器发生跳变,则在 V_{CC} 升至比电池电压高200mV之前充电器将不会退出停机模式。

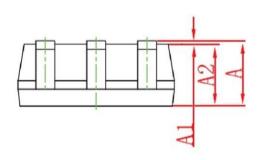
手动停机

在充电循环中的任何时刻都能通过去掉 R_{PROG} (从而使PROG引脚浮置)来把MLS4054A置于停机模式。这使得电池漏电流降至 0.1μ A以下,且电源电流降至 30μ A以下。重新连接电阻器可启动新的充电循环。

自动再启动


一旦充电循环被终止,MLS4054A立即采用一个具有1.5ms滤波时间($t_{RECHARGE}$)的比较器来对BAT引脚上的电压进行连续监控。当电池电压降至4.05V以下时,充电循环重新开始。这确保了电池被维持在(或接近)一个满充电状态,并免除了进行周期性充电循环启动的需要。


电池反接保护


MLS4054A具备锂电池反接保护功能,当锂电池正负极反接于MLS4054A电流输出引脚,MLS4054A会停机显示故障状态,无充电电流。充电指示管脚处于高阻态,LED灯灭,此时反接的锂电池漏电电流小于0.8mA。将反接的电池正确接入,MLS4054A自动开始充电循环。反接后的MLS4054A当电池去除后,由于MLS4054A输出端BAT管脚电容电位仍为负值,则MLS4054A指示灯不会立刻正常亮,只有正确接入电池可自动激活充电。或者等待较长时间BAT端电容放电结束使得BAT端电位大于零伏,MLS4054A会显示正常的无电池指示灯状态。反接情况下,电源电压应在标准电压5V左右,不应超过6V。过高的电源电压在反接电池电压情况下,VDD-BAT压差会超过9V,可能会造成芯片损伤,故在反接情况下电源电压不宜过高。

SOT-23-5L Package Outline Dimensions

Symbol	Dimensions in Millimeters(mm)		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950TYP		0.037TYP		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	