

特点

- 输入电源端口极限耐压可达30V
- 输入电源电压6.8V时芯片OVP
- 兼容30mA至600mA的可编程充电电流
- 恒定电流/恒定电压操作,有温度自适应可实现充电速率最大化
- 精度达到土1%的预设充电电压
- 自动再充电
- 充电状态单输出、无电池和故障状态显示
- C/10充电终止
- 2.9V涓流充电
- 软启动限制了浪涌电流
- BAT反接保护
- 采用5引脚SOT-23封装

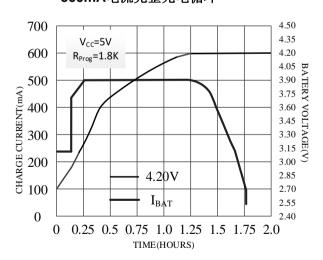
应用场合

- 电子烟、PAD、数码相机
- GPS便携式设备、各种充电器

绝对最大额定值

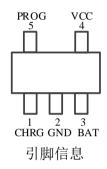
- 输入电源电压(VCC): -0.3V~30V
- PROG: -0.3V~10V
- BAT: -0.3V~12V
- *CHRG* : -0.3V~30V
- BAT短路持续时间: 连续
- BAT 引脚电流: 600mA
- PROG 引脚电流: 600uA
- 最大结温: 165℃
- 工作环境温度范围: -40°C~85°C
- · 贮存温度范围: -65℃~125℃
- 引脚温度(焊接时间10秒):260℃

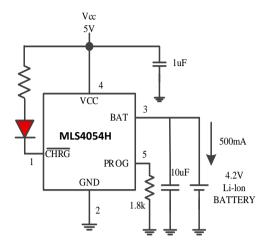
概述


MLS4054H是一款输入耐压高达30V,具有电源OVP功能的600mA单节锂离子电池线性充电器,其采用了恒定电流/恒定电压的充电模式。

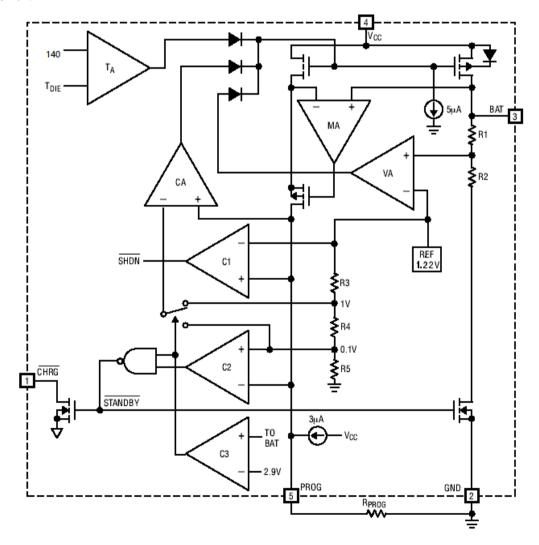
MLS4054H采用了内部PMOSFET架构,加防倒充电路,不需要外部隔离二极管。热反馈可对充电电流进行自适应调节,以便在大功率操作或高环境温度条件下对芯片充电电流加以限制。充满截止电压可分为两档: 4.2 V,4.35V。而充电电流可通过一个电阻器进行外部设置。当充电电流在达到最终浮充电压之后降至设定值1/10时,MLS4054H将自动终止充电循环。当输入电压掉电后,MLS4054H自动进入一个低电流状态,将电池漏电流降至0.1uA以下。MLS4054H的其他特点包括欠压闭锁、自动再充电和一个用于指示充电、结束的LED状态引脚。MLS4054H可以用于USB电源和适配器电源。

典型应用


500mA电流完整充电循环


产品引脚图和引脚位说明

SOT-23-5L	引脚名称	引脚功能	
1	CHRG	漏极开路输出的充电状态指示端	
2	GND	地	
3	BAT	充电电流输出	
4	VCC	正输入电源电压	
5	PROG	充电电流设定、充电电流监控和停机引脚	



典型电路

600mA单节锂离子电池充电器

方框图

电特性

凡标注●表示该指标适合整个工作温度范围,否则仅指TA=25℃, VCC=5V, 除非特别注明。

符号	参数	条件		最小值	典型值	最大值	单位
V _{cc}	输入电源电压		•		5		V
Vacc	输入电源最大耐压		•			30	V
V _{OVP}	输入电源OVP电压	从VCC低至高	•		6.8		V
$\triangle V_{OVP}$	输入电源OVP迟滞电压		•		500		mV
	输入电源电流	充电模式,, R _{PROG} = 1.8k	•		100		μА
lcc		待机模式 (充电终止)	•		100		μΑ
ω.		停机模式(RPROG未连,VCC < VBAT, 或 VCC < VUV)	•		60		μА
V	稳定输出(浮充)电压	0% < TA < 05%		4.306	4.35	4.394	V
V _{FLOAT}		0°C≤TA ≤85°C		4.158	4.2	4.242	V
		R _{PROG} =10k, 电流模式	•		95		mA
Бат		R _{PROG} =1.8k, 电流模式	•		500		mA
	BAT引脚电流: (电流模式测试条件是 VBAT=4.0V)	待机模式, V _{BAT} =V _{FLOAL}	•		-2	-6	μΑ
		停机模式(R _{PROG} 未连)			±1	±2	μA
		睡眠模式, V _∞ =0V			-1	-2	μA
ITRIKL	涓流充电电流	V _{BAT} <v<sub>TRIKL, R_{PROG}=1.8K</v<sub>	•		100		mA
V_{TRIKL}	涓流充电门限电压	R _{PROG} =1.8K, V _{BAT} 上升			2.9		V
V _{TRHYS}	涓流充电迟滞电压	R _{PROG} =1.8K			350		mV
V_{UV}	VCC欠压闭锁门限	VCC从低至高	•		3.8		V
V _{UVHYS}	VCC欠压闭锁迟滞		•		280		mV
,	VCC-VBAT闭锁门限电压	VCC从低至高			200		mV
V _{ASD}	ACC-ADM LATES TAKETO	VCC从低至高 VCC从高到低			100		mV
1	C/10终止电流门限	R _{PROG} =10K	•		15		mA
TERM	O/10炎正电机 IPK	R _{PROG} =1.8K	•		70		mA
V _{PROG}	PROG引脚电压	R _{PROG} =1.8K,电流模式	•	0.9	1.0	1.1	٧
V _{CHRG}	CHRG引脚输出低电压	I _{CHRG} =5mA			0.6		V
ΔV_{RECHRG}	再充电电池门限电压	V _{FLOAT} -V _{RECHRG}			100		mV
T _{LIM}	限定温度模式中的结温				140		$^{\circ}$
R _{ON}	功率FET"导通"电阻(在VCC与BAT之间)				1.05		Ω
tss	软启动时间	I _{BAT} =0至 I _{BAT} 设定值			20		μs
[†] RECHARGE	再充电比较器滤波时间	V _{BAT} 高至低			1		ms
t _{TERM}	终止比较器滤波时间	IBAT 降至I _{CHARGE} /10以下			2.5		ms
PROG	PROG引脚上拉电流				0.3		μA

工作原理

MLS4054H是一款采用恒流/恒压算法的单芯锂离子电池充电器。它可以提供高达600mA的充电电流,最终浮子电压精度为±1%。MLS4054H包括一个内部p沟道功率MOSFET和热调节电路。不需要阻塞二极管或外部电流检测电阻;热反馈自动调节充电电流,以限制芯片在高功率工作或高环境温度条件下的温度。此外,MLS4054H能够通过USB电源工作。当VCC引脚的电压高于UVLO阈值水平,并且从PROG引脚连接到地或当电池连接到充电器输出时,充电周期开始。如果BAT引脚小于2.9V,则充电器进入涓流充电模式。在这种模式下,MLS4054H提供大约1/10的编程充电电流,使电池电压达到全电流充电的安全水平。当BAT引脚电压高于2.9V时,充电器进入恒流模式,将程序设定的充电电流提供给电池。当BAT引脚接近最终浮压(4.2V)时,MLS4054H进入恒压模式,充电电流开始减小。当充电电流降至程序设定值的1/10时,充电周期结束。

输入电源电压OVP

MLS4054H具有输入电源电压OVP的功能,在Vcc输入电压达到6.8V时,芯片OVP保护,此时芯片停机,停止向电池充电:当电源电压再从6.8V降低到约6.3V时,芯片重新进入工作状态。

充电电流的设定

充电电流是采用一个连接在PROG引脚与地之间的电阻器来设定的。设定电阻器和充电电流采用下列公式来计算:根据需要的充电电流来确定电阻器阻值: $R_{PROG} = \frac{1100}{I}$ (误差±10%)

客户应用中,可根据需求选取合适大小的RPROG RPROG与充电电流的关系确定可参考下表:

R _{PROG} (K)	I _{BAT} (mA)		
30	28		
10	95		
5.1	190		
2	480		
1.8	500		
1.6	600		

充电终止

当充电电流在达到最终浮充电压之后降至设定值的1/10时,充电循环被终止。该条件是通过采用一个内部滤波比较器对PROG引脚进行监控来检测的。当PROG引脚电压降至100mV以下的时间超过 t_{TERM} (一般为2.5ms)时,充电被终止。(注:C/10终止在涓流充电和热限制模式中失效)。

充电时,BAT引脚上的瞬变负载会使PROG引脚电压在DC充电电流降至设定值的1/10之间短暂地降至100mV以下。终止比较器上的2.5ms滤波时间(t_{TERM})确保这种性质的瞬变负载不会导致充电循环过早终止。一旦平均充电电流降至设定值的1/10以下,4054H即终止充电循环并停止通过BAT引脚提供任何电流。在这种状态下,BAT引脚上的所有负载都必须由电池来供电。

在待机模式中,MLS4054H对BAT引脚电压进行连续监控。如果该引脚电压降到再充电电门限(V_{RECHRG})以下,则充电循环开始并再次向电池供应电流。

充电状态指示器(CHRG)

MLS4054H有一个漏极开路状态指示输出端CHRG。当充电器处于充电状态时,CHRG被拉到低电平,在其它状态,CHRG处于高阻态。当电池没有接到充电器时,输出脉冲信号表示没有安装电池。当电池连接端BAT管脚的外接电容为10uF时,CHRG闪烁周期约1-2秒。当不用状态指示功能时,将状态指示输出端接到地。

充电状态	红灯CHRG		
正在充电状态	亮		
电池充满状态	灭		
欠压,过低等故障状态	灭		
BAT端接10uF电容,无电池	红灯闪烁T=1-2 S		

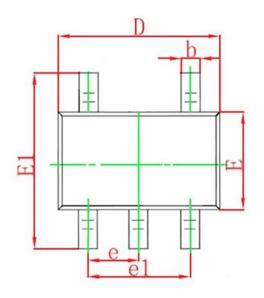
热限制

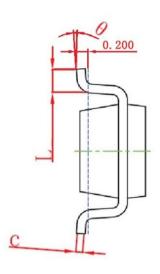
如果芯片温度升至约140℃的预设值以上,则一个内部热反馈环路将减小设定的充电电流,直到155℃以上减小电流至0。该功能可防止MLS4054H过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏MLS4054H的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

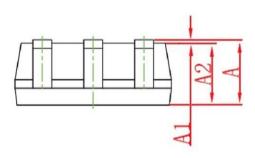
欠压闭锁

一个内部欠压闭锁电路对输入电压进行监控,并在 V_{CC} 升至欠压闭锁门限以上之前使充电器保持在停机模式。UVL0电路将使充电器保持在停机模式。如果UVL0比较器发生跳变,则在 V_{CC} 升至比电池电压高200mV之前充电器将不会退出停机模式。

手动停机


在充电循环中的任何时刻都能通过去掉 R_{PROG} (从而使PROG引脚浮置)来把MLS4054H置于停机模式。这使得电池漏电流降至 0.1μ A以下,且电源电流降至 60μ A以下。重新连接电阻器可启动新的充电循环。


自动再启动


一旦充电循环被终止,MLS4054H立即采用一个具有1ms滤波时间($t_{RECHARGE}$)的比较器来对BAT引脚上的电压进行连续监控。当电池电压降至 V_{RECHRG} 以下时,充电循环重新开始。这确保了电池被维持在(或接近)一个满充电状态,并免除了进行周期性充电循环启动的需要。在再充电循环过程中, \overline{CHRG} 引脚输出进入一个强下拉状态。

SOT-23-5L Package Outline Dimensions

Symbol	Dimensions in Millimeters(mm)		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950TYP		0.037TYP		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	