

特点

- 输入极限耐压8.0V, 提高系统可靠性
- 可直接从USB端口给单节锂离子电池充电
- 兼容30mA至600mA的可编程充电电流
- 恒定电流/恒定电压操作,有温度自适应可实现充电速率最大化
- 精度达到±1%的4.2V预设充电电压
- 1个充电状态开漏输出引脚
- 0.15C充电终止
- 待机模式下的供电电流为30uA
- 2.9V涓流充电
- 软启动限制了浪涌电流
- 采用6引脚SOT-23封装

应用场合

- 充电座
- 蜂窝电话、PDA
- 蓝牙应用

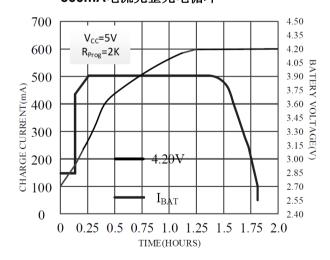
绝对最大额定值

- 输入电源电压(VCC): -0.3V~8.0V
- PROG: -0.3V~VCC+0.3V
- BAT: -4.2V~7V
- CHRG : -0.3V~8V
- BAT短路持续时间: 连续
- BAT 引脚电流: 600mA
- PROG 引脚电流: 800uA
- 最大结温: 145℃
- 工作环境温度范围: -40°C~85°C
- · 贮存温度范围: -65℃~125℃
- 引脚温度(焊接时间10秒):260℃

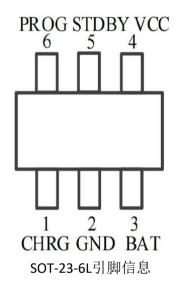
概述

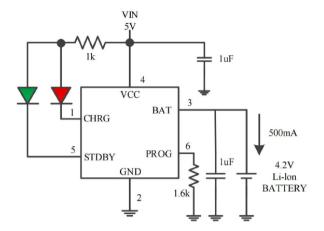
MLS4057是一款完整的单节锂离子电池充电器。其6引脚 SOT23的封装与较少的外部元件数使得MLS4057成为便携式应用的理想选择。采用了内部PMOSFET架构,加上防倒充电路,不需要外部检测电阻器和隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充满电压固定于4.2V,充电电流通过一个电阻器进行外部设置。当电池达到4.2V之后,充电电流降至设定值15%,MLS4057将自动终止充电。

当输入电压(交流适配器或USB电源)被掉电时,MLS4057自动进入一个低电流状态,电池端漏电流在0.1uA以下。MLS4057的其他特点包括充电电流监控器、欠压闭锁、自动再充电和一个用于指示充电的状态引脚。

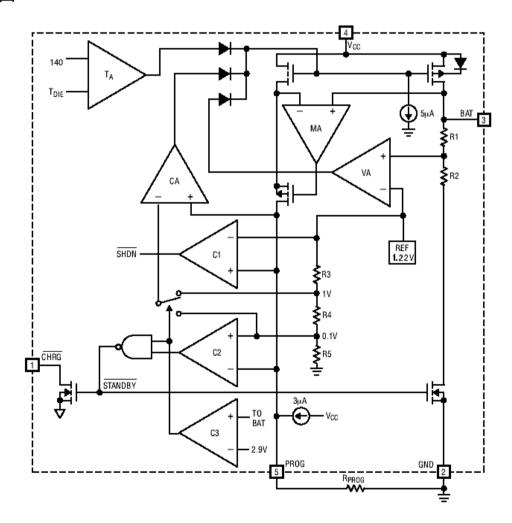


典型应用


500mA电流完整充电循环


产品引脚图和引脚位说明

SOT23-6	引脚名称	引脚功能	
1	CHRG	漏极开路输出的充电状态指示端	
2	GND	地	
3	BAT	充电电流输出	
4	VCC	正输入电源电压	
5	STDBY	电池充电完成指示端	
6	PROG	充电电流设定、充电电流监控和停机引脚	



典型电路

600mA单节锂离子电池充电器

方框图

电特性

凡标注●表示该指标适合整个工作温度范围,否则仅指TA=25℃, VCC=5V, 除非特别注明。

符号	参数	条件		最小值	典型值	最大值	单位
V _{CC}	输入电源电压		•	4.5	5	8	V
${ m I}_{ m CC}$		充电模式,, R _{PROG} = 10k ●			150	500	μА
	输入电源电流	待机模式 (充电终止)	•		30	100	μА
		停机模式(RPROG未连,VCC < VBAT,或VCC < VUV)	•		30	100	μА
V _{FLOAT}	稳定输出 (浮充) 电压	0°C≤TA ≤85°C, IBAT=40mA		4. 158	4. 2	4. 242	V
		R _{PROG} =10k,电流模式	•	90	100	110	mA
		R _{PROG} =2k,电流模式	•	470	500	530	mA
I_{BAT}	BAT引脚电流:(电流模式测试条件是 VBAT=4. OV)	待机模式,V _{BAT} =4.2V	•		-2.5	-6	mA
		停机模式(R _{PROG} 未连)			±1	±2	μА
		睡眠模式, V _{CC} =OV			-0.1		μА
I_{TRIKL}	涓流充电电流	V _{BAT} <v<sub>TRIKL, R_{PROG}=10K</v<sub>	•	27	30	33	mA
V_{TRIKL}	涓流充电门限电压	R _{PROG} =10K, V _{BAT} 上升		2.8	2. 9	3. 0	V
V_{TRHYS}	涓流充电迟滞电压	$R_{PROG}=10K$			80		mV
V _{UV}	VCC欠压闭锁门限	VCC从低至高	•	3.6	3.8	4	V
V _{UVHYS}	VCC欠压闭锁迟滞		•	150	200	300	mV
$V_{ m MSD}$	手动停机门限电压	PROG引脚电平上升	•		2.6		V
	NGC NDATATES (7.1814年)	VCC从低至高			120		mV
$V_{ m ASD}$	VCC-VBAT闭锁门限电压	VCC从高到低			80		mV
	0 150/b J. h./5771F	$R_{PROG}=10K$	•		15		mA
1 _{TERM}	0.15C终止电流门限	$R_{PROG}=2K$	• 9 4 • 4 • 4 • 4 • 4 • 6 • 6 • 6 • 6 • 6 •		75		mA
V_{PROG}	PROG引脚电压	R _{PROG} =10K ,电流模式	•	0.9	1.0	1.1	V
$V_{\rm CHRG}$	CHRG引脚输出低电压	I_{CHRG} =5mA			0.3	0.6	V
Δ V _{RECHRG}	再充电电池门限电压	V _{FLOAT} -V _{RECHRG}		80	100	120	mV
T_{LIM}	限定温度模式中的结温				140		$^{\circ}$
$R_{ m ON}$	功率FET"导通"电阻(在VCC与BAT之间)				1.1		Ω
tss	软启动时间	I_{BAT} =0 to I_{BAT} =1000V/ R_{PROG}			20		ms
t _{recharge}	再充电比较器滤波时间	V _{BAT} 高至低		0.8	2	4	ms
t _{TERM}	终止比较器滤波时间	IBAT 降至 ICHG/10以下		0.8	2	4	ms
${ m I}_{ m PROG}$	PROG引脚上拉电流				2		μА

工作原理

MLS4057是一款采用恒流/恒压算法的单芯锂离子电池充电器。它可以提供高达600mA的充电电流,最终浮子电压精度为±1%。MLS4057包括一个内部p沟道功率MOSFET和热调节电路。不需要阻塞二极管或外部电流检测电阻;热反馈自动调节充电电流,以限制芯片在高功率工作或高环境温度条件下的温度。此外,MLS4057能够通过USB电源工作。当VCC引脚的电压高于UVLO阈值水平,并且从PROG引脚连接到地或当电池连接到充电器输出时,充电周期开始。如果BAT引脚小于2.9V,则充电器进入涓流充电模式。在这种模式下,MLS4057提供大约1/10的编程充电电流,使电池电压达到全电流充电的安全水平。当BAT引脚电压高于2.9V时,充电器进入恒流模式,将程序设定的充电电流提供给电池。当BAT引脚接近最终浮压(4.2V)时,MLS4057进入恒压模式,充电电流开始减小。当充电电流降至程序设定值的1/10时,充电周期结束。

正常充电循环

当Vcc引脚电压升至UVLO门限电平以上且在PROG引脚与地之间连接了一个精度为1%的设定电阻器或当一个电池与充电器输出端相连时,一个充电循环开始。如果BAT引脚电平低于2.9V,则充电器进入涓流充电模式。在该模式中,MLS4057提供约30%的设定充电电流,以便将电池电压提升至一个安全的电平,从而实现满电流充电。当BAT引脚电压升至2.9V以上时,充电器进入恒定电流模式,此时向电池提供恒定的充电电流。当BAT引脚电压达到最终浮充电压(4.2V)时,MLS4057进入恒定电压模式,且充电电流开始减小。当充电电流降至设定值的15%,充电循环结束。

充电电流的设定

充电电流是采用一个连接在PROG引脚与地之间的电阻器来设定的。设定电阻器和充电电流采用下列公式来计算:根据需要的充电电流来确定电阻器阻值: $R_{PROG} = \frac{1100}{I}$ (误差±10%)

客户应用中,可根据需求选取合适大小的RPROG RPROG与充电电流的关系确定可参考下表:

R _{PROG} (K)	I _{BAT} (mA)		
30	32		
20	50		
10	100		
5	200		
3	335		
2	500		
1.6	600		

充电终止

当BAT电压在达到最终浮充电压之后充电电流降至设定值的15%时,充电循环被终止。该条件是通过采用一个内部滤波比较器对PROG引脚进行监控来检测的。当PROG引脚电压降至 150mV 以下的时间超过tTERM(一般为2ms)时,充电被终止。充电电流被锁断,MLS4057进入待机模式,此时输入电源电流降至30μA。充电时,BAT引脚上的瞬变负载会使PROG引脚电压在充电电流降至设定值的15%之间短暂地降至150mV以下。终止比较器上的2ms滤波时间(tTRM)确保这种性质的瞬变负载不会导致充电循环过早终止。一旦平均充电电流降至设定值的15%以下,MLS4057即终止充电循环并停止通过BAT引脚提供任何电流。在这种状态下,BAT引脚上的所有负载都必须由电池来供电。

充电状态指示器(CHRG)

MLS4057有一个漏极开路状态指示输出端。当充电器处于充电状态时,CHRG被拉到低电平,在其它状态,CHRG处于高阻态。当电池没有接到充电器时,CHRG输出脉冲信号表示没有安装电池。当电池连接端BAT管脚的外接电容为10uF时,CHRG闪烁周期约1-2秒。当不用状态指示功能时,将状态指示输出端接到地。

充电状态	红灯CHRG
正在充电状态	亮
电池充满状态	灭
BAT端接10uF电容,无电池	闪烁T=1-2 S

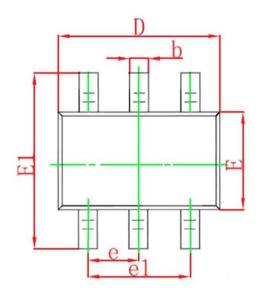
热限制

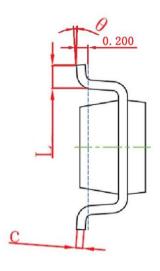
如果芯片温度升至约140℃的预设值以上,则一个内部热反馈环路将减小设定的充电电流,直到155℃以上减小电流至0。该功能可防止MLS4057过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏MLS4057的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

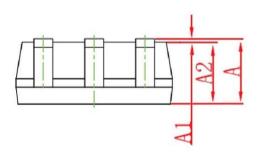
欠压闭锁

一个内部欠压闭锁电路对输入电压进行监控,并在 V_{CC} 升至欠压闭锁门限以上之前使充电器保持在停机模式。UVL0电路将使充电器保持在停机模式。如果UVL0比较器发生跳变,则在 V_{CC} 升至比电池电压高100mV之前充电器将不会退出停机模式。

手动停机


在充电循环中的任何时刻都能通过去掉R_{PROG}(从而使PROG引脚浮置)来把MLS4057置于停机模式。这使得电池漏电流降至0.1μA以下,且电源电流降至30μA以下。重新连接电阻器可启动新的充电循环。


自动再启动


一旦充电循环被终止,MLS4057立即采用一个具有2ms滤波时间($t_{RECHARGE}$)的比较器来对BAT引脚上的电压进行连续监控。当电池电压降至 V_{RECHRG} 以下时,充电循环重新开始。这确保了电池被维持在(或接近)一个满充电状态,并免除了进行周期性充电循环启动的需要。在再充电循环过程中, \overline{CHRG} 引脚输出进入一个强下拉状态。

SOT-23-6L Package Outline Dimensions

Symbol	Dimensions in Millimeters(mm)		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.000	1.200	0.039	0.047	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.600	3.000	0.102	0.118	
е	0.950TYP		0.037TYP		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
K	0°	8°	0°	8°	